汉语大全>医学论文>人工神经网络及其在医学影像分析中的应用(一)

人工神经网络及其在医学影像分析中的应用(一)

详细内容

摘要:人工神经网络(ANN)是在结构上模仿生物神经联结型系统,能够设计来进行模式分析,信号处理等工作。为了使医学生和医务工作者能对神经网络,特别是人工神经网络及其在医学图像和信号检测与分析中的应用有个全面了解,本文避免了繁琐的数学分析与推导,以阐明物理概念为主,深入浅出地就有关问题加以阐述,期望有所裨益。

关键词:人工神经网络;产生;原理;特点;应用

Applicationofman-madeneuralworkandmedicalImagetoanalyses



Abstract:Man-madeneuralwork(ANN)isabindingsystemonstructuretoimitatebiologicalneuraltolink.Itcancarryonpatterndiscriminate,Signalprocessinget.inordertoletthemedicalstudentsandworkersunderstandtheneuralwork,especiallyunderstandtheman-madeneuralworkwhichappliestothemedicalimagetoanalyses,thearticleavoidsplicatedfigure’sanalysisandreasoning.Itexplainstheconcernedprofoundquestions,mainlyaboutthephysicalconcept.Insimpleterms.Ihopeitcanwork!

Keywords:Man-madeneuralwork;Produce;Principle;Characteristic;Application

人工神经的出现与发展,从而解决了对于那些利用其它信号处理技术无法解决的问题,已成为信号处理的强有力的工具,人工神经网络的应用开辟了新的领域。二十世纪九十年代初,神经网络的研究在国际上曾经出现一股热潮,近年来有增无减,已广泛应用在民用、军用、医学生物等各个领域。
1神经网络与人工神经网络
1.1神经网络
神经网络就是由多个非常简单的处理单元彼此按某种方式相互连接而成的计算机系统。该系统是靠其状态对外部输入信息的动态响应来处理信息。
1.2人工神经网络
1.2.1神经元模型的产生
神经元(神经细胞)是神经系统的基本构造单位,是处理人体内各部分之间相互信息传递的基本单元。每个神经元都由一个简单处理作用的细胞体,一个连接其它神经元的轴突和一些向外伸出的其它较短分支――树突组成。人的大脑正是拥有约个神经元这个庞大的信息处理体系,来完成极其复杂的分析和推导工作。
人工神经网络(ARTIFICIALNEURALWORK,简称(A.N.N.)就是在对人脑组织结构和运动机智的认识理解基础上模拟其结构和智能功能而构成的一种信息处理系统或计算机。二十世纪40年代初期,心理学家Mulloch、数学家Pitts就提出了人工神经网络的第一数学模型,从此开创了神经科学理论的研究时代。随后F.Rosenblatt、Widrow和Hopf、J.J.Hopfield等学者先后又提出了感知模型,使人工神经网络技术有了新的发展。
1.2.2人工神经网络的工作原理
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明:为了讨论方便,先规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。因此网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减小下次犯同样错误的可能性。首先,给网络各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出是完全随机的,“1”和“0”的概率各为50%。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。如果输出为“0”(结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
1.2.3人工神经网络的特点
人工神经网络的特点是高速信息处理能力和知识存储容量很大。人工神经网络同现行的计算机所不同的是,它是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超出某一门限值后才能输出一个信号。因此,神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。