汉语大全>高等教育论文>数学建模:大学生数学综合素质的核心(一)

数学建模:大学生数学综合素质的核心(一)

详细内容

  摘 要:数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,是大学生数学综合素质的核心内容。本文探讨了数学建模的内涵,分析了数学建模与数学综合素质的关系,并指出如何通过数学建模来提高大学生的综合素质。?

  关键词:大学生;数学建模;数学素质?

  Abstract: Mathematics modeling is a mathematical tool for solving real world problems with focus on major and ?unique? features of the system studied, which is the core of mathematics petence of undergraduates. In this ?paper,? the significance of mathematics modeling is analyzed by presenting the relations between mathematics ?modeling? and mathematics petence. Finally, it studies how to cultivate undergraduates' prehensive qualities by mathematics modeling study.?

  Key words: undergraduate; mathematics modeling; mathematics petence
  
  数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。
  
  一、数学建模的内涵及其应用趋势
  
  《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”〔1〕对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”〔2〕。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。?
  通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”〔3〕正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。
  
  二、数学建模与数学综合素质提升
  
  当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想像力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢??
  (一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。〔4〕?
  (二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究