注重“数学思想”的教育研究(一)
详细内容
【摘 要】本文阐明了“数学思想”教育研究的重要意义,介绍了“数学思想”的分类,详细地论述了三种“数学思想”的内涵、特点和教育功能,提出了“数学思想”教育研究的相关建议。
【关键词】数学理性思想 数学求真思想 数学创新思想
一、数学思想的内涵和分类
数学思想是几千年数学探索实践所创造的精神财富。根据数学哲学的近代研究,所谓数学思想指的是数学活动中的价值观念和行为规范。数学思想的内涵十分丰富,主要有数学创新思想、数学求真思想、数学理性思想、数学合作与独立思考思想等。限于篇幅,本文重点仅就其中三种数学思想进行论述。
二、“数学思想”教育研究的重要意义
日本数学家米山国藏指出:多数学生进入社会后,几乎没有机会应用他们在学校所学到的数学知识,因而这种作为知识的数学,通常在学生出校门后不到一两年就忘掉了,然而不管人们从事什么业务工作,那种铭刻于大脑的数学思想却长期在他们的生活和工作中发挥着重要作用。
为便于进行“数学思想”的教育研究,本文围绕“数学思想”的内涵、分类、特点和功能等问题作些基础工作。
三、数学创新思想
1.创新思想的概念
结合新情况、寻找新思路、解决新问题、创立新理论,这种思想叫创新思想。
2.数学创新思想的几个特点
首先,问题是数学创新的起点。群论的创造是为了解决四次以上代数方程是否有根式解的问题。超限数的创立是为了进一步弄清数学分析的基础,为了解决画家怎样把立体的东西画在平面上,产生了射影几何。……可以说:“没有问题就没有数学创造。”
再者,创造的自由性在近现代数学中表现得越来越明显。德国数学家康托说:“数学的本质就在于自由。”他主张数学家自由创造自己的概念,而无需顾及是否实际存在。这个认识使康托有可能超越有限的世界,以数学家的严密性建立起集合论和超限数;使几何学家超越感觉想象的空间,去研究非欧空间、n维空间;使公理数学家有可能建立抽象的纯数学和种种特异的数学来。…总之,使数学家永葆创新思想,推动数学永往直前。
3.数学创新思想的教育功能
创新是科学的本质,是社会发展的不竭动力。由于数学创新的典型事例多、创新实践对外界条件要求较少、创新成果易于展现,所以通过数学培养学生的创新思想是一条事半功倍的途径。通过数学创新思想的培养,能够克服学生唯书、唯师、唯上,照抄照搬的陋习,增加学生探索研究问题的主动性,提高学生思维的创新性、广阔性、流畅性及灵活性。